Thursday, March 12, 2009

Luigi Galvani

Today, for once, I begin with a Chesterton quote, one of the most surprising and uncanny for our topic, for in it we find the utterly unexpected appearance of a certain great scientist in GKC's book on - St. Francis?

That morning glory which St. Francis spread over the earth and sky has lingered as a secret sunshine under a multitude of roofs and in a multitude of rooms. In societies like ours nothing is known of such a Franciscan following. Nothing is known of such obscure followers; and if possible less is known of the well-known followers. If we imagine passing us in the street a pageant of the Third Order of St. Francis, the famous figures would surprise us more than the strange ones. For us it would be like the unmasking of some mighty secret society. There rides St. Louis, the great king, lord of the higher justice whose scales hang crooked in favour of the poor. There is Dante crowned with laurel the poet who in his life of passions sang the praises of the Lady Poverty, whose grey garment is lined with purple and all glorious within. All sorts of great names from the most recent and rationalistic centuries would stand revealed; the great Galvani, for instance, the father of all electricity, the magician who has made so many modern systems of stars and sounds. So various a following would alone be enough to prove that St. Francis had no lack of sympathy with normal men, if the whole of his own life did not prove it.
[GKC St. Francis of Assisi CW2:101, emphasis added]


Yes, Luigi Galvani, physician and founding scientist of electricity, was a third order Dominican. Some contemporaries ridiculed his work, calling him the "dancing master for frogs" but his name is great even today: the "galvanometer" measures electric charge; the process of "galvanization", placing a protective coating of one metal (often zinc) on another (often iron or steel), and other less familiar terms.

And we shall also pay a reverence to his wife Lucia - who had a very important, indeed critical role in his work - as you shall hear. You will also hear some surprising details about women in science in Galvani's time. This is a very long excerpt, but I think both interesting and surprising.

Galvani was born at Bologna, September 9, 1737. A number of his immediate relatives had been distinguished as clergymen. The early years of Galvani's life were spent in association with religious, and as a youth he wished to become a member of a religious order whose special function it was to assist the dying at their last hour. His father, however, was opposed to his entrance into religion, and so Galvani devoted himself to medicine at the University of Bologna, and at length became a professor of anatomy in `his Alma Mater.

...

Galvani began original work of a high order very early in his medical career. His graduation thesis with regard to bones, treating specially their formation and development, attracted no little attention and is especially noteworthy because of the breadth of view in it, for it touches on the various questions relative to bones from the standpoint of physics and chemistry as well as medicine and surgery. It was sufficient to obtain for its author the place of lecturer in anatomy in the University of Bologna, besides the post of director of the teaching of anatomy in the Institute of Sciences, a subsidiary institution. From the very beginning his course was popular. Galvani was an easy, interesting talker, and he was one of the first who introduced experimental demonstrations into his lectures.

...

His experimental work in comparative anatomy, strange as it might appear and apparently not to be expected, led him into the domain of electricity through the observation of certain phenomena of animal electricity and the effect of electrical current on animals.

Like so many other great discoveries in science, his first and most important observations in electrical phenomena were results of an accident. Of course, it is easy to talk of accidents in these cases. The fall of the apple for Newton, Laennec's observation of the little boys tapping on a log in the courtyard of the Louvre, from which he got his idea for the invention of the stethoscope, were apparently merest accidents. Without the inventive scientific genius ready to take advantage of them, however, these accidents would not have been raised to the higher planes of important incidents in history. They would have meant nothing. The phenomena had probably occurred under men's eyes hundreds of times before, but there was no great mind ready to receive the seeds of thought it suggested and go on to follow out the conclusions so obviously indicated. Galvani's observation of the twitching of the muscles of the frog under the influ-ence of electricity may be called one of the happy accidents of scientific development, but it was Galvani's own genius that made the accident happy.

There are two stories told as to the method of the first observation in this matter. Both of them make his wife an important factor in the discovery. According to the more popular form of the history, Galvani was engaged in preparing some frog's legs as a special dainty for his wife, who was ill and who liked this delicacy very much. He thought so much of her that he was doing this himself in the hope that she would be thus more readily tempted to eat them. While so engaged he exposed the large nerve of the animals' hind legs and at the same time split the skin covering the muscles. In doing this he touched the nerve-muscle preparation, as this has come to be called, with the scalpel and little forceps simultaneously, with the result that twitchings occurred. While seeking for the cause of these twitchings the idea of animal electricity came to him.

The other form of the story of his original discovery is not less interesting and is perhaps a little more authentic. One evening he was engaged in his laboratory in making some experiments while some friends and his wife were present. By chance some frogs, the hind legs of which had been stripped of skin, were placed upon the table not far from an apparatus for the generation of frictional electricity. They were not in contact with this apparatus at any point, however, though they were not far distant from the conductor. While the apparatus was being used to produce a series of sparks, a laboratory assistant, without thinking of any possible results, touched with the point of a scalpel the sciatic nerves of one of the animals. Just as soon as he did this all the muscles of this limb went into convulsive movement. It was Galvani's wife who noticed what had happened and who had the assistant use the scalpel once more with the same result.

She was herself a woman of well-developed intellect, and her association with her father and husband made her well acquainted with the anatomy and physiology of the day. She realized that what had occurred was quite out of the ordinary. Accordingly, she called the attention of ner husband to the phenomena, and is even said to have suggested their possible connection with the presence and action of the electric apparatus. Husband and wife then together, by means of a series of observations, determined that whenever the apparatus was not in use the phenomenon of the conclusive movements of the frog's legs did not take place, notwithstanding irritation by the scalpel. Whenever the electric apparatus was working, however, then the phenomenon in question always took place. According to either form of the story it is clear that Madame Galvani had an important part in the discovery, and Galvani himself, far from making little of what she had accomplished, was always glad to attribute his discovery, or at least the suggestive hint that led up to it, to his wife.

After these first discoveries on the influence of artificial electricity, nothing seemed more interesting then to investigate whether ordinary atmospheric electricity as manifested in lightning would produce the same effects on muscular movements; In this matter Galvani showed much courage as an inventive genius. He dared to place an atmospheric conductor on the highest point of his house and to this conductor he attached a wire, which ran down to his laboratory. During a storm he suspended on this metallic circuit by means of their sciatic nerves frogs' legs and the legs of other animals prepared for the purpose. To the feet of the animals he attached another wire sufficiently long to reach down to the bottom of a well, thus completing a current to the ground.

All the phenomena took place exactly as if with artificial electricity. Whenever lightning flashed from the clouds the limbs of the animals experimented with underwent violent contractions, which were noticeable before the noise of the thunder, and were, so to say, the signal for it. These contractions took place, although there were no conductors from the muscles, and although the nerve conductors were not isolated. The muscular contractions were greater in proportion than the intensity of the lightning and the proximity of the storm. The phenomena were manifest whether the animal was in the open air or if, for greater convenience, it was enclosed in a room, or even in a vessel. The muscular contractions could even be noticed despite the fact that the nerves were separated somewhat from their conductor, especially whenever the lightning was violent. The sparks would leap over a small gap almost as in the case of artificial electricity, the muscular contraction of the animal being proportioned to the energy and the nearness of the sparks.

It is almost needless to say, these experiments upon the frog were not accomplished in a few days or a few weeks. Galvani had his duties as Professor of Anatomy to attend to, besides the obligations imposed upon him as a busy practi-tioner of medicine and surgery. At that time it was not nearly so much the custom as it is at present, to use frogs for experiments, with the idea that conclusions might be obtained of value for the biological sciences generally, and especially for medicine. There has always been an undercurrent of feeling that such experiments are more or less a beating of the air. Galvani found opposition not only to his views with regard to animal electricity as enunciated after experimental demonstration, but also met with no little ridicule because of the supposed waste of time at occupations that could not be expected to lead to any practical results. It was the custom among scientific men to laugh somewhat scornfully at his patient persistence in studying out every detail of electrical action on the frog, and one of the supposedly prominent scientists of the time even dubbed him the frog dancing master. This did not, however, deter Galvani from his work, though some of the bitter things must have proved cutting enough, and might have discouraged a smaller man, less confident of the scientific value of the work that he was doing.

...

The most interesting quality of Galvani's scientific career is the thoroughly experimental character of all his researches into natural phenomena. Few men have known so well how to vary their experiments so as to bring out new details of scientific knowledge. His experimental skill was of the highest order, and it is to this that we owe the development in his hands of the nascent science of electricity to a point where it became easy to continue its natural evolution. Galvani's work furnished the necessary stimulus to Volta, and then the real foundation of modern electricity was laid.
Two small notes: You are wondering about Volta? Yes, I should think his name sounds familiar... but you will hear more in a future posting. Also, I wonder if Dr. Walsh noted the very funny pun about Galvani furnishing a stimulus to Volta: he was - ah - "galvanized" into action. But let us resume...
While his distinction as a professor at the university gave him many opportunities for practice among the rich, he was always ready and willing to help the poor, and, indeed, seemed to feel more at home among poor patients than in the society of the wealthy and noble. Even towards the end of his life, when the loss of many friends, and especially his wife, made him retire within himself much more than before, he continued to exercise his professional skill for the benefit of the poor, though he often refused to take cases that might have proved sources of considerable gain to him. Early in life, when he was very busy between his professional work and his practice, he remarked more than once, on refusing to take the cases of wealthy patients, that they had the money with which to obtain other physicians, while the poor did not, and he would prefer to keep some time for his services for them.

...

Toward the end of his life Galvani was not a little perturbed by the course of events around him and by the sweeping away of faith in old beliefs, consequent upon the French Revolution and the philosophic movement that had led up to it. Seeing around him, too, the abuses to which this supposed liberty and assertion of the rights of man led, it used to be a favorite expression of Galvani that " A little philosophy led men away from God, but a good deal of it led them back to Him again." Especially did he consider this true with regard to younger men, whose lack of wisdom in the difficult phases of life made them think their philosophy of things was complete, until sad experience had taught them the necessity for lifting men's minds above any mere religion of humanity, any mere stoic resignation to the inevitable, if what was best in them was to be brought out.

A very interesting phase of the Italian university life of that time is revealed in two important incidents of Galvani's university career. One of his professors, one, by the way, for whom he seems to have had a great deal of respect, and to whose lectures he devoted much attention, was Laura Caterina Maria Bassi, the distinguished woman professor of philosophy at the University of Bologna, about the middle of the eighteenth century. It is doubtless to her teaching that Galvani owes some of his thoroughgoing conservatism in philosophic speculation, a conservatism that was of great service to him later on in life, in the midst of the ultra-radical principles which became fashionable just before and during the French Revolution. Madame Bassi seems to have had her influence on him for good not only during his student career, but also later in life, for she was the wife of a prominent physician in Bologna, and Galvani was often in social contact with her during his years of connection with the university.

As might, perhaps, be expected, seeing that his own happy domestic life showed him that an educated woman might be the centre of intellectual influence, Galvani seems to have had no spirit of opposition to even the highest education for women. This is very well illustrated by the first formal lecture in his course on anatomy at the university, which had for its subject the models for the teaching of anatomy that had been made by Madame Manzolini. In the early part of the eighteenth century Madame Manzolini had been the professor of anatomy at the University of Bologna, and in order to make the teaching of this difficult subject easier and more definite she modelled with great care and delicate attention to every detail, so that they imitated actual dissections of the human body very closely, a set of wax figures which replaced the human body for demonstration purposes at least at the beginning of the anatomical course.

Galvani, in taking up the work of lecturer on anatomy, appreciated how much such a set of models would help in making the introduction to anatomical study easy, yet at the same time without detracting from its exactness, and, accordingly, introduced his students to Madame Manzolini's set of models in his very first lecture. At the time there were those connected with the teaching of anatomy who considered the use of these models as rather an effeminate proceeding. Galvani's lack of prejudice in the matter shows the readiness of the man to accept the best wherever he found it without regard to persons or feelings.

...

Before he died, he asked, as had Dante, whose work was his favorite reading, to be buried in the humble habit of a member of the Third Order of St. Francis. He is said to have valued his fellowship with the sons of the "poor little man of Assisi" more than the many honorary fellowships of various kinds which had been conferred upon him by the scientific societies all over Europe.

...
[In the panegyric of 1801 given by Alibert, the Secretary-general of the Medical Society of Emulation,] there is a very curiously interesting passage with regard to Galvani's habit of frequently closing his lectures by calling attention to the complexity yet the purposefulness of natural things and the inevitable conclusion that they must have been created with a definite purpose by a Supreme Being possessed of intelligence. At the time that Alibert wrote his memoir it was the fashion to consider, at least in France, that Christianity was a thing of the past, and that while theism might remain, that would be all that could be expected to survive the crumbling effect of the emancipation of man.
He says: "We have seen already what was Galvani's zeal and his love for the religion which he professed. We may add that in his public demonstration he never finished his lectures without exhorting his pupils to a renewal of their faith by leading them always back to the idea of the eternal Providence which develops, preserves and causes life to flow among so many different kinds of things.

[Walsh, Makers of Modern Medicine]


He died in Bologna, December 4, 1798.

Also see here.

1 Comments:

At 12 March, 2009 20:16, Blogger Andrew Stine said...

"Galvani's habit of frequently closing his lectures by calling attention to the complexity yet the purposefulness of natural things and the inevitable conclusion that they must have been created with a definite purpose by a Supreme Being possessed of intelligence."

A conclusion that unfortunately isn't as popular among today's biologists.

I should read your blog more frequently. Come to think of it, I should also be reading more of James Walsh.

 

Post a Comment

<< Home